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This paper deals with small vibrations of thin plane wings arranged in
tandem in plane incompressible flow. The solution is obtained by breaking
the problem down into two simpler ones [ 1 1. One of these problems is
nonhomogeneous and represents noncirculatory flow past a system of wings,
whilst the second is a homogeneous problem which can be solved by means
of functional combinations containing several constants. Thin wing theory
is used to solve these problems [2 ], the whole investigation consisting
essentially of finding the constants by means of linear equations,

Closer attention is given to the problem of vibrations in a tandem
biplane system in which one of the wings is fixed. Approximate express-
ions are given for the hydrodynamic forces and the energy characteristics
of the system, regarded as a moving group.

1. Kinematic relations for vibrating planes in tandem. We
consider a system of thin plane wings of infinite span in tandem which is
undergoing small harmonic vibrations of frequency ¢ in a stream of in-
compressible fluid moving with constant velocity Ve We introduce the co-
ordinate system Oxy (Fig.l) which moves with the undisturbed stream at
velocity vg; then if we assume the disturbed fluid flow to be irrotational,
the velocity potential ®(x, y, t) of the total motion satisfies the

linearized flow conditions
od

Ty =t (@ st e (k=1 i=V=1) (1.1)
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Both here, and in what follows, we shall only deal with the real part
(with respect to the imaginary number j) of complex expressions which
involve the exponential time term. Moreover, for brevity, but without
restricting the validity of expression (1.1) it is assumed that the
average angle of incidence is zero. If the thin wings vibrate as solid
bodies the complex amplitude of the normal velocity vnk(x) can be deter-
mined from the expression

@ =it (Ltz)or (wo=-2) (1.2)

where v, and w, are the complex amplitudes of the vertical and angular
velocities of the plate a.b,.

Assuming the disturbed vibrational motion of the fluid to be quasi-
stationary we find

99

@ (z, y, t) = 9(x, y) e, ay Vak (Z) on a; b, (1.3)

The harmonic function ¥ (x, y) must satisfy several additional condi-
tions. In fact, for the fluid pressure we have the linearized expression
(p0 and p are respectively the pressure and density in the undisturbed
fluid)

9 . .
P — Po = pvy (;Z — ]Ho‘P} &7t (1.4)

Thus from symmetry considerations and the condition of continuity of
pressure we obtain

ez, —y)=—9o(x,¥), 9z, 0)=0 for z>b

d .
'a‘j:‘—lllo(? =0 for y=0 outside a, b, (z<<b)

(1.5)

It follows from these conditions that, behind the wing-trailing edges,
lines of discontinuity in horizontal velocity exist, representing a
vortex sheet originating at these trailing edges. The solution we are
trying to find should satisfy the condition of finite velocity at the
trailing edges a,.

To solve the problem we introduce the function w = ¢” + i ¢ of the
complex variable z = x + iy, where the imaginary number i = v~ 1 is not
interchangeable with the imaginary number j. Later on we shall split the
above problem into the two simpler problems; w(z) = wo(z) + wl(z) where
the functions wy = ¢, + i1, and wo= gy + i!/'l, satisfy conditions

Im dw,

7 == — Unk (x) on alib Re Wy (7)) =0 outside ay b/‘- (16)

3]

Imw,(z) = Ak on «,b,, Rew,(r) =0 for x2>b,
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1.7

Re (%" '—]-P'Owl) =0 (for y=0 outside 4,5, (z<b) 49

The function wo(z) represents the complex potential of fluid flow
without circulation, while the function w1(z) is a solution to the homo-
geneous problem and is linear in terms of the constants Ag. It is obvious
that the function w(z), determined from conditions (1.6) and (1.7),
satisfies (1.3) and (1.5). The constants A, in this function must be
found from the condition of fimite velocity at the trailing edges a,.

Using thin wing theory [2.3 1 we find imnediately that

n 3
ddu;o Zm,g (2) (z Byz +2 2 \ _k(EzEl‘—(’)‘dE) (1.8)

k=1 gy

n s
2@ = ([T c—a)z—by))

§=1
3y

& (@) = (e —2) @z — ) [] (z—a.) (z—by)) (1.9)

sek

The constants B,(k = 0,1, ..., n~ 2), which are real with respect to i,
are found by equating to zero the circulation round n —~ 1 sections akbk

O n—g ] n bk (1.10)
dz dz Unk & 8k ®) .
Bx* . +2 di=0 (=1,...,n—1

ag ,‘% g (@) ag 8@ ,Z'lagk E—z ( n=1

To determine v, we introduce a further function
d

f(z)=r+is=T";1 — Jiowy (1.11)
From (1.7) we have the following conditions for the function f(z):
Imf(z) = —juodx onayb,, Re /() = 0 outside a; b, (1.12)
It follows from these conditions that the expansion of the function

f(z) in the neighborhood of a point at infinity takes the following form
(ak is real with respect to i)

fey="0 (1.13)

The function f(z) is thus determined, and so is dw,/dz. In fact, using
the expansion (1.13), we shall have (Ck is real with respect to i)
by
8 (8)
1@ = mm (Zc;. 2 + 2jibo ZAA S e ) (144)

ay

To determine the constants C, and A, we make use of the condition of
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finite fluid velocity at the trailing edges a,, which can be written
lim (z — al)’h(du" + f) =0 (=1, ...,n

za;

Applying this condition we arrive at the system of linear equations
bg

n—1 n

. .. sk (8 .
) Crart + 2o N Ax | P di +
k=0 k=1 gy !

n—2

+ 3 Byat +22,S ""‘E’g"(g’d*_o Q=1 ..., n) (1.15)

k=0 k=1 ay

in which all the constants C, are given linearly in terms of 4,. To de-
termine the latter we must satisfy the first of the conditions (1.7).

To do this let us regard (1.11) as a differential equation in w;. Bear-
ing in mind that at large distances in front of the planes the fluid is

undisturbed we find .

Py (z, 0) = eitex g e—itet 5 (z, 0) dz (1.16)
Making use of this expression and satisfying the first of the condi-
tions (1.7) we have the following system of linear equations
b,

Az P Jrob [& e—]u.a‘ts(x O) dz + 2.! 1 (()-Jp.a, _e-—iuobs) +
1—1 Y541
+ S e iuox 5 (z, 0) dz] C=1,...,n) (1.17)
s=1 g,

In this way, the final determination of the function w(z) consists of
finding the constants 4,, B, and C, by means of the linear equations
(1.10), (1.15) and (1.17). However, an analysis of transient motion of
multiplanes in tandem [ 3,4 1 in the general case, with arbitrary varia-
tion of normal velocities with time, leads us into great difficulty be-
cause some unwieldy integral equations have to be solved.

2. Vibrations of one wing in a tandem biplane. We now dis-
cuss a tandem biplane, the edges of which are determined thus: - a, =
- a, b1 =a, a,=~c-band b, =-c+ b, where ¢ is the abscissa of
the center of gravity of the second wing, and 25 is the width of this
wing. We shall now assume the second wing to be at rest (vnz(x) = 0)*,
then formulas (1.8), (1.9), and (1.14) for this case take the form

* In all our calculations we assume ¢ > 0, i.e. the stationary wing is
at the rear., If the stationary wing is in front(c < 0) the following
change should be made in the formulas, (2 a2)1/2 = - (|c2 - 021)1/2
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duw, 1 ¢ o Gra®
= ey (B2 | 2 &) (2.1)
—a
1 G UG
1) = gy (Co+ Ciz + 2oy | £1CL i 270 4y b—gi_—z d%) (2.2)

g() = (@—)+eP— bl @)= (=) [@+ef—bN" o
ga(2) = = (|* — @ | (B — (z + o))"

To determine the constants we have equations (1.10), (1.15) and (1.17),
which in particular give

a a a

dz dx vn (E) 81 (E) _
Bo _Sa 81 (1) +2_Sa £1 (3") —Sa E—.z dE =0 (24)
¢ : —c4-d
v, (E) 4w 4 i )
Bo+ Co—Cha + 2 S Eta - 81 (8) €& + 24, S g’fﬁ =0 (2.5
- —c—b

¢ . . — b\'s
By+Co—Cy(c+b) + 2_Sa(vn(¢) +JPoA1)((a’— E’)E—i—:Tz)l dt—
b

—cH
. b— s o,

—2juedy { (lo—ar 555D =0 (2.6)

4, = efl*-“g e—itex 5 (2, 0) d (2.7)

-]
—c b
Ay = A, eite(a+b—0) L gits (b—0) S e—itx s (z, 0)dx (2.8)
—a

Let us suppose that the stationary wing is much shorter than the
vibrating one so that ¢ >> b. In this case equations (2.4) - (2.8) allow
us to find explicit approximate expressions for the constants entering
these equations, if we represent the stationary wing as a concentrated
singularity. In fact, it follows from (2.1) and (2.4) that outside the
section (~ ¢ - b, — ¢ + b) the following expressions are valid to
accuracy of the order of (b/c)2.

“ . (E . 13 2 __p2
B0= _2 g T (E)(ag '_Eg)xlzd;_’ '(‘1;‘:9:—' 1 S ln(w) (Ea_’sg)

h

d:  (2.9)

mi (2 — a'.‘.)'fz

—a
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Expressions (2.9) represent fluid flow without circulation round an
isolated thin vibrating wing. It therefore follows that the effect of
the stationary wing on the noncirculatory part of the fluid flow close
to the vibrating wing, which gives rise to the supplementary effect of
connected masses, is only manifest in dipole, quadripole and higher
approximations.

Equations (2.5) and (2.6) appear in the following simplified form with
this degree of accuracy
c

Co—cla+2ﬂj}10a2(7_%’) Al =(C——a) Dl (2.10)

Co—Cyc+ mjpoa® A; = b(Dy + Cy 4+ 2xjpocd; +
+ 4jjun (3 — 2%) (¢ — ¥ Ay) (2.41)

a

Dy=—2 § 7n () (—Z;E)”’de, D, =2 S

2a —a

v, (E) (a® — ER)'T2
E+c i

d: (2.12)

If follows from (2.2) that outside the section (-~ ¢ — b, — ¢ + b), to
an accuracy of terms of order (b/c)?, the following expression prevails
1 . y Co— Cic 4 wjpa® 4,
= [C; — 2% A, (2 — (z® — a?)'iz 0o~ 2 2.13
/(@) o (2% — a?)e [C1—27juo A, (z — (2 — a®)T1)] + o (2t o) (7 — a7 (2.13)
while it follows from (2.11), that the second factor in (2.13) is of
order b/c. Thus the approximate expressions (2.9) and (2.13) correspond
to representation of the effect of the stationary wing on the fluid flow
close to the vibrating wing, by that of a concentrated vortex of given

strength.

Using expressions (2.7) and (2.13) we can obtain the following equa-
tions to determine the constant 4,:

Cy Hy® () — 2mpdy H @ (p) = - By (Co— Cre + wjpady) (== poa) (2.14)

1 —iex g .
. € ol daldy . T (2 ¢ =
=\ ormmo . e —iwEe=g @ (w=) @19)

Here Hn(z) = I - jN, is a Hankel function, and from relation (2.15)
we obtain

;oI —(@2 )" 5, ® [ ol N _ gl ]
how ((102—1)": “ + 2a, @ H¢2 \ao ! ’}«_]]132 (10 ’ ‘J) (Y == (J-nc)

2.16)
where the functions H (2) and Hs(z) have been tabulated [5] and are ex-
pressed in terms of Hankel functions by means of relations
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. (2.47y
H.® (Tiio— ) § H,® ( ) cos xdz, H® (_ai{ , v) = DSH o'® (?zo—) sin zdz

Equations (2.10), (2.11) and (2.14) allow us to determine the constants
C; and A; to an accuracy of order (6/c) ), To do this, we put

Cio + 0Cyy, Ay = Aio + bAy (2.18)

Then from these equations, we obtain
Cio=C () Dy, 2mpdyy = (1 —Cw) Dy
Coo=a[(2 C (@) — 5 (1 — C )] Dy
Cor = [(200 — 1) € () + (2o — ) (1 — C (@) - (2.19)
— 2t H) o= D ET )] -2
Cu= [C(s»)— = =) EiT (@)=
2rjudn = [1—C ) + 2 (0 — 1) BT )] 5

a(@—=1)
Here Clu), T{p) and G represent the following expressions
(2)
O pp— Ll ) T (u) = !

H® () + [H® () H® () +7Ho® () (2.20)
G = Dy + 2r] vAzo + Cyo + 471 dzg (3 — 21) (xe® — 1)
For the final determination of all the constants we must find the

value of 4,,. From equation (2.8) and expressions (2.13) and (2.19) we
find

Asg = [an (1 —C@p)(t —e " Ey)— 5 e*-w E,C (p.)] Dy (2.21)

—jpx dE
E, =§ Yo dz, E, =~ (2.22)

Note that the functions E, and E, can be evaluated in terms of Bessel
functions Ik(“) Actually, if we make the substitution U= x — (x? -~ 1)1/2
the expression for E takes the following form

U,
j 1 \)dU X
Bi= =\ [ (U+4)]7  Co=wo— @t =107
1
Now, making use of the expansion

exp [--(U + - ,,\] =To(p) + 2; (U* U T ()
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we arrive at the following expression for E , which is convenient for

calculation,
o

Ei= =L@ U~ 32 1) 0, — U (2.23)

k=1

3. Hydrodynamic forces which act on the tandem biplane. We
now work out the hydrodynamic forces which act on the vibrating wing in
the tandem biplane. If we use expression (1.4) and represent the func-
tion w in terms of w, and f, we arrive at the following relations for
11ft and moment:

Y = pvoef°'§ (F(2) + ez ) dz
M =g eJ°lS[z/(z)+zk1+’“°z)d";°]dz (3.1)
K

where K is the contour which bounds the section (- a,a) and is anticlock-
wise,

From formulas (2.9), (2.13) and (2.19) and the theorem of residues we
find b b
Y=Yo+—a"Y11 M=1Wo+TM1 3.2)

where Yo and M0 are the lift and moment respectively corresponding to the
vibration of an isolated wing:
Y0=—29vog[c (IL)\ ) +m(1—-7) ]v,.(x, 1) dz
(va (3, 1) = vn () ci7) (3.3)

@

My= —2ave { [(1— %)+ 7 (1—5)" +

+%(C(y;a— 1)(2;;) ]vn(x t)dz

and Y, b/a and M, b/a are the supplementary force and moment caused by the
actlon of the stauonary wing as a concentrated vortex.

¥y = g Geiot (Z8 2 BT () (a? — 1)~)
° (3.4)

. —3 C
M, = pvgaGeiot ( Io 2 4 )

1 ... —1
4o —1 2(10_1)—?‘6401'((.‘.)——10(102—-1) h)

To calculate the suction forces at the leading edges bk' we use the
general formula [2 ]
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Xy = —prlim {(z — by) [——e1°'] } (3.5)

Using (2.9), (2.13) and (2.19), we get an expression for the mean
value of the suction at the leading edge z = a of the vibrating wing

t+2rjo
L ) - b - L]
X=X Xy (=2 | 40a) (3.6)
{
where Xlo‘ is the average suction on an isolated vibrating wing
pa ¢ v, (x)dz 1 2
X' =8| | S+ €@ =Dy (3.7)

and Xn"‘b/a is the supplementary component in the suction expression
caused by the stationary wing acting as a concentrated vortex.
X ‘—"’—Re[G(M 2 EyT () + —— )}r’]
n =3, G0 —1 ot T 5 +1
(3.8)
¢ v, (z)dz 1
F=— S W+ZT(C(”)"1)D1
To work out the suction forces acting on the stationary wing, we must
start with the accurate formulas (2.1), (2.2) and (2.5) and after this
we must transform the boundary. The result of this gives

Xz. 41! (cs a’) I G Iz (3'9)

The complete expression for the projection of the hydrodynamic forces
on the x axis takes the form (B(¢) is the angle of incidence of the
vibrating wing):

T =X, +X,—YB (By=— %w‘ot) (3.10)

For several modes of vibration T > 0 and in this case a tensile
force appears, i.e. the vibrating wing in the biplane tandem system can
be regarded as a moving group. In this case the average value of useful
and wasted power is given by the

E'=T"v, N =—(YV4+MQ (V =veit, Q= aeiot) (3.11)

The relations obtained above allow one to work out these energy
characteristics and the thrust efficiency n = E*/N*,
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